Python API Client Walkthrough

Python API Client Walkthrough

Last Updated: Version 2024.08.20

This notebook demonstrates basic functionality offered by the Coin Metrics Python API Client using Coin Metrics Community Data.

Coin Metrics offers a vast assortment of data for hundreds of cryptoassets. The Python API Client allows for easy access to this data using Python without needing to create your own wrappers using requests and other such libraries.

Prerequisites

First, Python must be installed. Download and install from python.org. The Coin Metrics API Client is best used with Python 3.8 or later.

Then, install the Python API Client:

pip install coinmetrics-api-client

Some of the optional libraries such as pandas, numpy, and seaborn are used in the notebook to make the examples more interactive. These libraries are not required to use the Coin Metrics API Client.

You are now ready to run the code in the rest of the notebook.

Resources

To understand the data that Coin Metrics offers, feel free to peruse the resources below.

Setup

from os import environ
import sys
import pandas as pd
import numpy as np
import seaborn as sns
import logging
from datetime import date, datetime, timedelta
from coinmetrics.api_client import CoinMetricsClient

import matplotlib.pyplot as plt
%matplotlib inline
logging.basicConfig(
    format='%(asctime)s %(levelname)-8s %(message)s',
    level=logging.INFO,
    datefmt='%Y-%m-%d %H:%M:%S'
)
# We recommend privately storing your API key in your local environment.
# Uncomment below if you have an API Key. Otherwise we will use Community data.
# try:
#     api_key = environ["CM_API_KEY"]
#     logging.info("Using API key found in environment")
# except KeyError:
#     api_key = ""
#     logging.info("API key not found. Using community client")

client = CoinMetricsClient()
# client = CoinMetricsClient(api_key)
assets = ['btc', 'eth']
metrics = ['ReferenceRateUSD', 'CapMrktEstUSD']
start_time = datetime(year=2024, month=9, day=1)
end_time = datetime(year=2024, month=9, day=30)
asset_mapping = {i: assets[i] for i in range(len(assets))}
{0: 'btc', 1: 'eth'}

Catalogs

The Coin Metrics API contains two types of catalog endpoints (Python client functions in paranthesis): the catalog (catalog_*_v2) and catalog-all (catalog_full_*_v2).

The catalog endpoint displays the set of data available to your API key. The catalog-all endpoint displays the full set of data for our dataset.

asset_metrics_catalog = client.catalog_asset_metrics_v2(assets=assets).to_list()
full_asset_metrics_catalog = client.catalog_full_asset_metrics_v2(assets=assets).to_list()

Catalog objects return a list of dictionaries. For catalog_asset_metrics_v2, each element of the list is an asset, while each dictionary is a set of metadata for that specific asset.

print(f"Asset Metrics Catalog metadata includes: {list(asset_metrics_catalog[0].keys())}")

for i in asset_mapping:
    print(f"Asset {asset_mapping[i]} has {len(asset_metrics_catalog[i]['metrics'])} metrics in catalog.")
    print(f"Asset {asset_mapping[i]} has {len(full_asset_metrics_catalog[i]['metrics'])} metrics in catalog-all.")
Asset Metrics Catalog metadata includes: ['asset', 'metrics']
Asset btc has 147 metrics in catalog.
Asset btc has 696 metrics in catalog-all.
Asset eth has 146 metrics in catalog.
Asset eth has 699 metrics in catalog-all.
Asset Metrics Catalog metadata includes: ['asset', 'metrics']
Asset btc has 147 metrics in catalog.
Asset btc has 513 metrics in catalog-all.
Asset eth has 146 metrics in catalog.
Asset eth has 500 metrics in catalog-all.

For more details on what metrics are covered, see Coverage

Getting Timeseries Data

Next, we will pull timeseries data. Typically there are two types of timeseries data that you can pull: raw observations such as trades and aggregated metrics. We will explore these two below.

Asset Metrics

First, we will use the asset-metrics endpoint to get metrics for BTC and ETH.

btc_metrics = [m['metric'] for m in asset_metrics_catalog[0]['metrics']]
eth_metrics = [m['metric'] for m in asset_metrics_catalog[1]['metrics']]

You can bound your query by time like below:

df_asset_metrics = client.get_asset_metrics(
    assets=assets, 
    metrics=metrics, 
    start_time=start_time,
    end_time=end_time
).to_dataframe()
df_asset_metrics.head()
asset
time
CapMrktEstUSD
ReferenceRateUSD

0

btc

2024-09-01 00:00:00+00:00

1132518348250.186279

58959.926273

1

btc

2024-09-02 00:00:00+00:00

1168286956855.852539

57349.080718

2

btc

2024-09-03 00:00:00+00:00

1138274882375.744873

59159.023888

3

btc

2024-09-04 00:00:00+00:00

1146114653782.878418

57637.775444

4

btc

2024-09-05 00:00:00+00:00

1108213762229.152832

58033.39897

asset
time
CapMrktEstUSD
ReferenceRateUSD

0

btc

2024-08-15 00:00:00+00:00

1137894996787.05249

58840.64668

1

btc

2024-08-16 00:00:00+00:00

1163252605521.227783

57644.187688

2

btc

2024-08-17 00:00:00+00:00

1172900035803.550781

58927.276509

3

btc

2024-08-18 00:00:00+00:00

1160659435495.434814

59414.674335

4

btc

2024-08-19 00:00:00+00:00

1172894781992.733887

58793.206146

df_asset_metrics.loc[df_asset_metrics.asset=='btc'].plot(x='time', y='ReferenceRateUSD')

Coin Metrics supports several metrics for various data types such as exchanges, markets, and asset-pairs.

You can also bound your queries by using the limit parameter.

df_asset_metrics_limit = client.get_asset_metrics(
    assets=assets, 
    metrics=btc_metrics[:5], 
    start_time=start_time,
    end_time=end_time,
    limit_per_asset=2
).to_dataframe()
df_asset_metrics_limit
asset
time
AdrActCnt
AdrBal1in100KCnt
AdrBal1in100MCnt
AdrBal1in10BCnt
AdrBal1in10KCnt

0

btc

2024-09-01 00:00:00+00:00

660770

9283

3046587

20365534

973

1

btc

2024-09-02 00:00:00+00:00

717673

9284

3046904

20359814

972

2

eth

2024-09-01 00:00:00+00:00

548611

6907

1836310

27996184

1221

3

eth

2024-09-02 00:00:00+00:00

488354

6902

1836617

28008369

1218

asset
time
AdrActCnt
AdrBal1in100KCnt
AdrBal1in100MCnt
AdrBal1in10BCnt
AdrBal1in10KCnt

0

btc

2024-08-15 00:00:00+00:00

715632

9229

3054724

20292616

973

1

btc

2024-08-16 00:00:00+00:00

700335

9231

3055010

20300505

977

2

eth

2024-08-15 00:00:00+00:00

603353

6862

1837926

27972812

1226

3

eth

2024-08-16 00:00:00+00:00

541263

6871

1837366

27962507

1223

Market Observations

The other common timeseries data type that you will encounter are individual observations.

First, we will need to familiarize ourselves with the market convention which we can find on faqs. You can see a full list of markets by using the reference-data endpoint.

df_coinbase_btc_markets = client.reference_data_markets(asset='btc', exchange='coinbase').to_dataframe()
df_coinbase_btc_markets.head()
market
exchange
base
quote
pair
symbol
type
size_asset
margin_asset
strike
...
order_price_increment
order_price_min
order_price_max
order_size_min
order_taker_fee
order_maker_fee
margin_trading_enabled
experimental
base_native
quote_native

0

coinbase-1inch-btc-spot

coinbase

1inch

btc

1inch-btc

1INCH-BTC

spot

<NA>

<NA>

<NA>

...

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

<NA>

<NA>

1

coinbase-aave-btc-spot

coinbase

aave

btc

aave-btc

AAVE-BTC

spot

<NA>

<NA>

<NA>

...

0.000001

0.000001

<NA>

0.000016

<NA>

<NA>

False

<NA>

<NA>

<NA>

2

coinbase-ada-btc-spot

coinbase

ada

btc

ada-btc

ADA-BTC

spot

<NA>

<NA>

<NA>

...

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

<NA>

<NA>

3

coinbase-algo-btc-spot

coinbase

algo

btc

algo-btc

ALGO-BTC

spot

<NA>

<NA>

<NA>

...

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

<NA>

<NA>

4

coinbase-ankr-btc-spot

coinbase

ankr

btc

ankr-btc

ANKR-BTC

spot

<NA>

<NA>

<NA>

...

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

<NA>

<NA>

5 rows × 39 columns

market
exchange
base
quote
pair
symbol
type
size_asset
margin_asset
strike
...
order_amount_min
order_amount_max
order_price_increment
order_price_min
order_price_max
order_size_min
order_taker_fee
order_maker_fee
margin_trading_enabled
experimental

0

coinbase-1inch-btc-spot

coinbase

1inch

btc

1inch-btc

1INCH-BTC

spot

<NA>

<NA>

<NA>

...

<NA>

<NA>

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

1

coinbase-aave-btc-spot

coinbase

aave

btc

aave-btc

AAVE-BTC

spot

<NA>

<NA>

<NA>

...

<NA>

<NA>

0.000001

0.000001

<NA>

0.000016

<NA>

<NA>

False

<NA>

2

coinbase-ada-btc-spot

coinbase

ada

btc

ada-btc

ADA-BTC

spot

<NA>

<NA>

<NA>

...

<NA>

<NA>

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

3

coinbase-algo-btc-spot

coinbase

algo

btc

algo-btc

ALGO-BTC

spot

<NA>

<NA>

<NA>

...

<NA>

<NA>

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

4

coinbase-ankr-btc-spot

coinbase

ankr

btc

ankr-btc

ANKR-BTC

spot

<NA>

<NA>

<NA>

...

<NA>

<NA>

0.0

0.0

<NA>

0.000016

<NA>

<NA>

False

<NA>

5 rows × 37 columns

We can then pass these markets onto the timeseries/market-* endpoints. Below is an example of how to pull individual market trades.

df_coinbase_btc_trades = client.get_market_trades(
    markets=["coinbase-btc-usd-spot"],
    start_time=datetime.now()-timedelta(seconds=60),
    end_time=datetime.now(),
).to_dataframe()
df_coinbase_btc_trades.head()
market
time
coin_metrics_id
amount
price
database_time
side

0

coinbase-btc-usd-spot

2024-10-25 15:22:44.919441+00:00

705966854

0.000004

68353.27

2024-10-25 15:22:45.721609+00:00

buy

1

coinbase-btc-usd-spot

2024-10-25 15:22:44.919441+00:00

705966855

0.000012

68353.27

2024-10-25 15:22:45.721609+00:00

buy

2

coinbase-btc-usd-spot

2024-10-25 15:22:44.919441+00:00

705966856

0.002187

68354.37

2024-10-25 15:22:45.721609+00:00

buy

3

coinbase-btc-usd-spot

2024-10-25 15:22:44.919441+00:00

705966857

0.002523

68354.38

2024-10-25 15:22:45.721609+00:00

buy

4

coinbase-btc-usd-spot

2024-10-25 15:22:45.078614+00:00

705966858

0.001043

68353.27

2024-10-25 15:22:45.721609+00:00

buy

market
time
coin_metrics_id
amount
price
database_time
side

0

coinbase-btc-usd-spot

2024-09-13 16:55:02.663733+00:00

691698441

0.008

59491.6

2024-09-13 16:55:03.253369+00:00

sell

1

coinbase-btc-usd-spot

2024-09-13 16:55:02.670644+00:00

691698442

0.008

59491.61

2024-09-13 16:55:03.253369+00:00

buy

2

coinbase-btc-usd-spot

2024-09-13 16:55:03.057923+00:00

691698443

0.001186

59491.61

2024-09-13 16:55:03.771512+00:00

buy

3

coinbase-btc-usd-spot

2024-09-13 16:55:03.143752+00:00

691698444

0.15742

59491.6

2024-09-13 16:55:03.771512+00:00

sell

4

coinbase-btc-usd-spot

2024-09-13 16:55:03.143816+00:00

691698445

0.076281

59491.6

2024-09-13 16:55:03.771512+00:00

sell

Examples from State of the Network

The Python API Client is often used for transforming data for State of the Network. Below are some examples of data transformations done to produce the data visualizations.

Example 1: Get returns by coin in the CM reference rates universe over the last 10-years

In State of the Network #128, we looked at the returns for each asset dating back the last 10 years.

We can generate this data by weaving in the catalog_asset_metrics_v2 and get_asset_metrics endpoint. The code snippets below demonstrate how to do this with a small list of assets.


# Get all assets that have a reference rate 
assets_refrate = client.catalog_asset_metrics_v2(metrics="ReferenceRateUSD")
# Get list of assets with daily ref rate 
# uncomment the top line to look at *every* asset with reference rates
# asset_with_ref_rates = assets_refrate[0]["frequencies"][0]["assets"]
asset_with_ref_rates = ['btc', 'eth', 'bnb', 'ada', 'doge', 'xrp']
#Query API for prices, daily CM reference rates as dataframe
metrics = "ReferenceRateUSD"
frequency = "1d"

logging.info("Getting prices...")
df_prices = client.get_asset_metrics(
    assets=asset_with_ref_rates,
    metrics=metrics,
    frequency=frequency,
    start_time=start_time,
    end_time=end_time
).to_dataframe()
# Assign datatypes
df_prices["time"] = pd.to_datetime(df_prices.time)
df_prices["ReferenceRateUSD"] = df_prices.ReferenceRateUSD.astype(float)

# Reshape dataset so assets are in columns, dates are the rows, and the values are prices
df_prices_pivot = df_prices.pivot(
    index="time",
    columns="asset",
    values="ReferenceRateUSD"
)

# Index each asset's time series to 1 
for col in df_prices_pivot.columns:
    logging.info(f"Calculating Reference rate for {col}....")
    # First price in time series
    first_price = df_prices_pivot[df_prices_pivot[col].notnull()][col].iloc[0]
    # Index time series
    df_prices_pivot[col] = df_prices_pivot[col]/first_price
    # Fill forward for Null values
    df_prices_pivot[col] = df_prices_pivot[col].ffill()
2024-10-25 15:23:44 INFO     Getting prices...
2024-10-25 15:23:45 INFO     Calculating Reference rate for ada....
2024-10-25 15:23:45 INFO     Calculating Reference rate for bnb....
2024-10-25 15:23:45 INFO     Calculating Reference rate for btc....
2024-10-25 15:23:45 INFO     Calculating Reference rate for doge....
2024-10-25 15:23:45 INFO     Calculating Reference rate for eth....
2024-10-25 15:23:45 INFO     Calculating Reference rate for xrp....
2024-09-13 16:56:10 INFO     Getting prices...
2024-09-13 16:56:11 INFO     Calculating Reference rate for ada....
2024-09-13 16:56:11 INFO     Calculating Reference rate for bnb....
2024-09-13 16:56:11 INFO     Calculating Reference rate for btc....
2024-09-13 16:56:11 INFO     Calculating Reference rate for doge....
2024-09-13 16:56:11 INFO     Calculating Reference rate for eth....
2024-09-13 16:56:11 INFO     Calculating Reference rate for xrp....
df_prices_pivot.tail()
asset
ada
bnb
btc
doge
eth
xrp

time

2024-09-26 00:00:00+00:00

1.102137

1.100617

1.069534

1.070347

1.024427

1.030510

2024-09-27 00:00:00+00:00

1.162204

1.118540

1.103424

1.164025

1.046276

1.042040

2024-09-28 00:00:00+00:00

1.165724

1.141772

1.115465

1.222446

1.073526

1.040046

2024-09-29 00:00:00+00:00

1.158667

1.127693

1.115512

1.267128

1.064176

1.084632

2024-09-30 00:00:00+00:00

1.151477

1.119118

1.112921

1.232789

1.056856

1.133519

asset
ada
bnb
btc
doge
eth
xrp

time

2024-09-09 00:00:00+00:00

1.008826

0.960197

0.932336

0.936040

0.862489

0.930312

2024-09-10 00:00:00+00:00

1.024744

0.990748

0.971026

1.011867

0.885729

0.948722

2024-09-11 00:00:00+00:00

1.024288

0.988299

0.980011

1.001351

0.896031

0.950876

2024-09-12 00:00:00+00:00

1.051865

1.011061

0.975672

0.987734

0.878328

0.940610

2024-09-13 00:00:00+00:00

1.061901

1.036981

0.987831

1.001874

0.885837

0.987858

Example 2: Get daily spot trading volume on Coinbase for USDC markets

In State of the Network #126, we looked at spot volume on trusted exchanges over time.

We can replicate similar data behind chart using just coinbase spot markets at 2021. Here, we derive volume from our get_market_candles endpoint.

candles_coinbase = client.get_market_candles(
    markets="coinbase-*-usdc-spot", # wildcards can be passed to get all asset pairs
    start_time="2024-01-01",
    end_time="2024-09-30",
    frequency="1d"
).to_dataframe()
candles_coinbase["candle_usd_volume"] = candles_coinbase.candle_usd_volume.astype(float)
candles_coinbase["time"] = pd.to_datetime(candles_coinbase.time)
2024-10-25 15:23:45 INFO     Sleeping for a rate limit window because 429 (too many requests) error was returned. Pleasesee Coin Metrics APIV4 documentation for more information: https://docs.coinmetrics.io/api/v4/#tag/Rate-limits
candles_coinbase.head()
market
time
price_open
price_close
price_high
price_low
vwap
volume
candle_usd_volume
candle_trades_count

0

coinbase-eurc-usdc-spot

2024-08-23 00:00:00+00:00

1.121

1.119

1.121

1.118

1.120121

997787.0

1.117636e+06

140

1

coinbase-eurc-usdc-spot

2024-08-24 00:00:00+00:00

1.12

1.12

1.13

1.119

1.120547

1122215.0

1.257359e+06

412

2

coinbase-eurc-usdc-spot

2024-08-25 00:00:00+00:00

1.121

1.12

1.132

1.119

1.121433

2796276.0

3.135467e+06

1727

3

coinbase-eurc-usdc-spot

2024-08-26 00:00:00+00:00

1.12

1.118

1.126

1.116

1.118883

1999004.0

2.236406e+06

882

4

coinbase-eurc-usdc-spot

2024-08-27 00:00:00+00:00

1.117

1.119

1.122

1.116

1.118849

1505368.0

1.684066e+06

1227

market
time
price_open
price_close
price_high
price_low
vwap
volume
candle_usd_volume
candle_trades_count

0

coinbase-eurc-usdc-spot

2024-08-23 00:00:00+00:00

1.121

1.119

1.121

1.118

1.120121

997787.0

1.117636e+06

140

1

coinbase-eurc-usdc-spot

2024-08-24 00:00:00+00:00

1.12

1.12

1.13

1.119

1.120547

1122215.0

1.257357e+06

412

2

coinbase-eurc-usdc-spot

2024-08-25 00:00:00+00:00

1.121

1.12

1.132

1.119

1.121433

2796276.0

3.135472e+06

1727

3

coinbase-eurc-usdc-spot

2024-08-26 00:00:00+00:00

1.12

1.118

1.126

1.116

1.118883

1999004.0

2.236419e+06

882

4

coinbase-eurc-usdc-spot

2024-08-27 00:00:00+00:00

1.117

1.119

1.122

1.116

1.118849

1505368.0

1.684074e+06

1227

We can also break this down by month. Note that for this example, the volume numbers will look smaller because we are using fewer exchanges.

month_order = [
    'January', 'February', 'March', 'April', 'May', 'June', 
    'July', 'August', 'September', 'October', 'November', 'December'
]


candles_coinbase.groupby(
    candles_coinbase.time.dt.month_name()
)[['candle_usd_volume']].sum().reindex(month_order).dropna()
candle_usd_volume

time

January

4.401994e+08

February

1.227417e+08

March

2.522828e+08

April

1.476761e+08

May

2.575348e+08

June

9.312749e+08

July

1.331209e+09

August

2.433962e+09

September

1.849214e+09

Last updated